

The GRIT project for reaction studies

D.Beaumel, IPN Orsay For the GRIT collaboration

Conseil scientifique de l'in2p3, 26-27 juin 2019

Direct reactions

A great tool to investigate Exotic Nuclei and Astrophysical processes

Direct reactions

A great tool to investigate Exotic Nuclei and Astrophysical processes

Transfer reactions as a tool

Quantitative information on wave functions

1-nucleon transfer

Single particle properties Orbital energies, occupancies 1-nucleon overlaps (A+1|A) Information on *individual* configurations

2-nucleon transfer Test 2 nucleon overlaps (A+2|A) Probe coherence effects of several config.

Cluster Transfer Clustering features Quartetting

Indirect methods for astrophysics e.g $(n,\gamma) \leftrightarrow (d,p)$ and $(p,\gamma) \leftrightarrow (^{3}\text{He},d)$ Millibarns of cross-sections for transfer ! Use of Radioactive Ion beams in inverse kinematics

STUDIES WITH RADIOACTIVE NUCLEAR BEAMS

Understanding the N=50 shell closure

Recent identification of shape coexistence just below N=50

β-decay of N=48 ⁸⁰Ge A. Gottardo et al., PRL 116, 182501 (2016) Laser spectroscopy of N=49 ⁷⁹Cu X. F. Yang et al., PRL 116, 219901 (2016)

- What is the underlying shell structure and evolution mechanisms ?
- Role of the intruder configurations ?
 (Multiparticle-multihole excitations above the N=50 and Z=28 gaps)

Crucial for a global description of this region of the nuclear chart And for reliable predictions for astrophysical processes (r-process)

Understanding the N=50 shell closure - II

1. Characterize directly the energy evolution of valence orbitals

2. Investigate Intruder configurations

<u>Methods</u>

- Investigate 2 neutron transfer (t,p) reaction on N=49 (neutron hole) isotones
 - → Selective population of 2p-1h intruder states $(\nu(g_{9/2})^{-1}(sd)^{+2} \text{ configurations})$
 - \rightarrow Study (t,p) on ⁸⁷Kr, ⁸⁷Se, ⁸³Ge, ⁸¹Zn with GRIT-AGATA at SPES
- (d,p) reaction on long-lived intruder 1/2+ states in e.g. ⁸¹Ge and ⁷⁹Zn Beams produced by selective laser ionization (Zn)

Evidencing neutron-proton pairing by np pair transfer

Nuclei : a unique system where superconductivity can develop over two fluids (neutron and proton) 4 types of Cooper pairs T=1 nn, pp, np np should be similar to nn and pp T=0 np pairs → new phase of nuclear matter no clear evidence

nn pairing by 2n transfer -> dynamical aspects

Collective states in the part.-part. channel

For np pairing study \rightarrow N=Z nuclei to maximize overlap of n and p WF

adapted from Frauendorf & Macchiavelli Prog. in Part. and Nucl. Phys. 78 (2014) 24

Pattern confirmed in 2n transfer results from (p,t) and (t,p) studies

Broglia, Hansen, Riedel, Adv. Nucl. Phys. 6, 287 (1973)

Evidencing neutron-proton pairing by np pair transfer II

Deuteron transfer reaction on N=Z nuclei The "smoking gun" for probing T=0 pairing ?

 σ (0⁺)/ σ (1⁺) gives the relative strength of T=0/T=1 pairing

Explaining the origin of heavy elements (A > 56)

Vast majority of A>56 nuclei are created through neutron capture (n,γ)

Slow neutron-capture process: $\tau_{\beta} \leq \tau_n$ *Nn* ~10⁷-10¹¹ cm⁻³ *T*~1-3.10⁸*K* duration: 10-10⁴ yr

Rapid neutron-capture process: $\tau_{\beta} >> \tau_n$

Masses, β -decay half-lives, capture cross-sections (n, γ)

M.R. Mumpower et al., PPNC 86, 86 (2016)

240

Indirect determination of $\sigma(n,\gamma)$ from (d,p γ)

2 cases

- Low Level Density (n-rich nuclei)
 Capture to individual states/resonances
 (d,pγ) → relevant properties (E, L, SF, Γ)
- High Level Density (near or at stability)
 - Calculated compound nucleus probab.

$(d,p\gamma) \rightarrow$ Branching ratios

A.Ratkiewicz et al., PRL 122, 052502 (2019) "Surrogate method"

Early application by the collaboration

Determination of 46 Ar(n, γ) 47 Ar using 46 Ar(d,p) 47 Ar reaction studied with the MUST array at GANIL *L.Gaudefroy et al., EPJA 27, 309 (2006)*

Presently, all (n, γ) rates for r-process come from Hauser-Feshback calculations

M.R. Mumpower et al., PNPP 86, 86 (2016)

Strong model dependence (fact ~1000) far from stability

r-process and shell structure in the $N \sim 82$ region

Importance of neutron $p_{1/2}$ and $p_{1/2}$ for capture !

r-process "bumps" on the N=82 shell closure

- 1. How to predict their evolution south of ¹³²Sn ?
 - Study the (d,pg) reaction on ¹³²Sn and ¹³⁰Cd
 - Extract the neutron-proton monopole matrix elements + occupancies
 - Predict evolution of single-part. energies down to ¹²²Zr
- 2. For >¹³²Sn a gap may appear at N=90 due to nn interaction From ¹³²Sn to ¹⁴⁰Sn : fill up the neutron 2f_{7/2} shell similar monopole M.E. and possibly 3-body forces are at play as in the case of N=28 → Study ¹³⁴Sn(d,p) to deduce gap evolution (and p orbits s.p.e.)

GRIT-AGATA experiments at SPES

Type I X-ray bursts

(p,γ) key reactions

- The (p,γ) reactions play an important role in luminosity profile & XRB abundance Isotopic yields are mostly those at waiting points
- > (p,γ) cross-section can be deduced from proton transfer (³He,d)

At **GANIL** using SPIRAL or LISE beams: Study ⁵⁶Ni(³He,d), ⁶⁵As(³He,d), ⁶⁰Zn(³He,d) or alternatively the (d,p) reaction on the mirror nuclei

(Initial) methodology with exotic beams

Few 100's keV resolution although very thin target

Y.Blumenfeld et al., NIM A421 (1999)

Constraints due to kinematics

Need

- Large angular acceptance
- Large dynamic range
- Low threshold
- > Thin target

Kinematics weakly dependent On mass (and on E) of the beam General purpose system

Silicon arrays developments

Particle spectroscopy

E_x resolution: ~500 keV

Particle-γ **Spectroscopy**

E_x resol.: ~5keV (AGATA)

The GRIT project

(Granularity, Resolution, identification, Transparency) (GASPARD-TRACE collaboration)

 4π Si array fully integrable in AGATA & PARIS

- High granularity (strip pitch < 1 mm)</p>
- Large dynamical range

Layers of Silicon

- 500 um DSSD pitch < 1mm</p>
- 1.5 mm DSSD pitch ~5mm
- Special targets (Cooled ^{3,4}He cell, pure H, tritium)
- PID using Pulse Shape Analysis techniques
- New Integrated electronics

The GRIT/MUGAST collaboration

Management Board: M. Assié (IPNO), D. Beaumel (IPNO, spokesperson) D. Mengoni (INFN Padova), A. Pullia (INFN Milano)

Steering committee :

R. Bougault (LPC Caen), Y. Blumenfeld (IPN Orsay), S. Leoni (INFN-Milano), G. De Angelis (LNL, Italy), A. Gadea (Valencia, Spain), W. Catford (U. of Surrey, UK), A. Shrivastava (BARC Mumbai, India), G. De France (GANIL) = chair

Collaboration:	
France:	In2p3 (IPNO, LPC), GANIL, CEA Saclay (CHyMENE)
India:	BARC Mumbai
Italy:	INFN/U. Padova, INFN Legnaro, INFN/U. Milano, INFN/U.Firenze
Spain:	Univ. of Valencia, Univ. of Santiago, Univ. of Huelva
UK:	Univ. of Surrey, STFC Daresbury

MoU in progress

R&D on Pulse Shape Discrimination

Motivation: improve (TOF-based) PID of low-E charged particles

9

R&D on Pulse Shape Discrimination

Initial detector:

- 500 um nTD DSSD
- 128X+128Y, 8° cut
- Pitch<500um
- Special packaging

New data under analysis

- Test of PSD with trapezoid
- Effect of radiation damage \geq

Crucial to set electronics specs. (e.g. sampling rate,...)

Detectors for GRIT

Detectors for the first layer

- Trapezoid and squared geometries
- 6" wafers, 128 X + 128 Y
- Special packaging: very thin frame
- Kapton readout, ~90° w/r surface
- > NTD, random cut, reverse mount
- Thin and thick

Trapezoidal DSSD

Commissioned:

- ✓ 2 prototypes 500um IPNO
- ✓ 4 pre-series (Surrey U., IPNO, Santiago) (MICRON SC Ltd., UK)

Squared DSSD

Commissioned :

 ✓ 2 prototypes 500um INFN (MICRON SC Ltd, UK)

Under development

✓ 2 proto 500 um BARC Mumbai
 (Semiconductor Lab , Chandigarh, India)

Detectors for the second layer to be developed

GRIT Mechanical design

Constraints

- AGATA inner radius = 23cm
- Transparency to gamma-rays
- Special targets integration (CHyMENE, Orsay He)
- 7000 electronics channels
 FEE under vacuum -> few KW
 Connectics and feedthroughs

- Preliminary detailed design was achieved
- Final version to be completed (IPN Orsay) (see workplan)

Electronics of GRIT

BUILDING BLOCKS

GLOBAL SCHEME

- ASIC version of the PACI preamp. (IPNO)
 + TOT preamp ASIC for 2nd layer (Milano)
 Version 3 to be submitted
- PLAS Analog memory circuit *R.Aliaga et al., NIM A800(2015)* Fast sampling analog memory (200Mhz) Version 1 available LPC Caen now in charge for next versions Change of technology required Need contract engineer (CDD)
- FASTER backend

Special targets for GRIT

The Orsay Helium target

Cooled gas cell at T~ 5K ⁴He and ³He versions

Reactions with ^{3,4}He probe

- (³He,d) proton shell evolution
- (³He,p) for np pairing
- (⁴He,³He) for neutron shells selective for high-L orbitals Complementary to (d,p)

Ø 16 mm, 2-3mm-thick cell Havar windows 3.8μm T = 5K , P = 1 bar

Status:

- ³He version has been developed
- Currently used in MUGAST-AGATA campaign at GANIL

The CHyMENE system

Continuous extrusion of ¹H or ²H through an extruder nozzle <u>Collaboration</u>: CEA/IRFU Saclay (*project coordinator: A. Gillibert*) CEA/DAM Bruyères, IPN Orsay Funded by the French agency ANR Suppresion of ¹²C-induced background (in CH2 and CD2 targets)

Status:

- Tested under beam at ALTO in May 2019
 20 and 100 μm ¹H
- ²H version to be developed

MUGAST: an intermediate step towards GRIT [MUst2 – GASpard – Trace]

MUGAST: - New detectors of GRIT + MUST2 electronics + few telescopes - Coupled with AGATA @ VAMOS

⇒ First High resolution Direct Reactions studies at Ganil (new SPIRAL1 beams)

Surrey, Santiago

100 120 140

Θ (deg)

Coordinator: M. Assié, IPNO

Present: MUGAST@GANIL/VAMOS

First step towards GRIT

Positive scientific evaluations

- ✓ GANIL PAC
- ✓ GANIL Scientific committee
- ✓ IPNO Scientific committee
- Selected for AGATA campaigns at GANIL in 2019 and 2020

Next Step: MUGAST@GANIL/LISE

A new compact, 2-layer Si configuration 12 EXOGAM modules at 15cm from target

- Detectors for 2nd layer (1.5mm) Status: to be ordered in 2019-20
- New chamber /connectics Status: Designed / to be designed

Global strategy

	2019	2020	2021	2022	2023	2024 ~
MUGAST@VAMOS						
MUGAST@LISE						
GRIT (GANIL, SPES, Isolde?)						

Gantt chart for GRIT development and construction

Major developments

Si detectors

In close collaboration with MSL (UK), and Mumbai (SLC Chandigharg, India)

Electronics

Main developments by In2p3 IT's (iPACi, PLAS, boards, connectics) and use of FASTER backend (LPCC)

Mechanics

Challenging design (Detectors, targets and FEE integration, cooling, connectics), to be performed at IPN Orsay

Capital cost and manpower for GRIT

	2019	2020	2021	2022	2023	2024	2025	Total (k€)
Detectors								
Thin DSSD proto (500um, SCL)	76							76
Thick Si protos (1.5mm, MSL)	80							80
Serie DSSD (1 st layer, MSL+SCL)		63	36	45		18		162
Serie DSSD (2 nd layer, MSL)		60	50			40	90	240
Annular detectors						30		30
Electronics								
ASICs, boards, modules, power supply, connectics	20	40	82	90	90			322
Mechanics								
MUGAST@LISE chamber			30					30
GRIT final reaction chamber				40	40			80
IN2P3	10	37	60	65	65	30	31	298
Normandy Region	40	40	40					120
GANIL (*)								
INFN	50	59	62	65	65	58	59	418
BARC	76		36	36				148
Univ. of Surrey		18						18
Univ. of Santiago de Comp ^{lla}		9		9				18
TOTAL (k€)	176	163	198	175	130	88	90	1020

	2019	2020	2021	2022	2023	2024	2025
In2p3							
Eng./tech.	4.	3.5	5.1	4.6	3.8	0.4	0.4
Physicists	6.4	6.4	6.	5.	5.	5.	5.
GANIL							
Eng./tech.	2.4	2.4	2.3	0.8	0.8	0.8	0.8
Physicists	1.	1.	1.	1.	1.	1.	1.
INFN							
Eng./tech	1.	1.	1.	1.	1.	0.	0.
Physicists	5.9	4.2	4.0	4.	4.	5.	5.
BARC							
Eng./tech.	1.	1.	1.	1.	1.	0.	0.
Physicists	2.	2.5	2.5	2.	2.	2.	2.

Backup slides

Physics opportunities with slowed-down beams

Purpose to slow-down in-flight beams : implement reactions/techniques of the low energy regime

Key issue : Characteristics of the SD beams

Direct reaction studies at using SD beams

- Take advantage of chemical independence and fast production process of in-flight beams
- Reactions at intermediate energies (10~50 MeV/u)

A broad physics program of direct reaction studies can be envisioned

Stripping reactions

- Nucleon, pair or cluster addition modes
 - ✓ unique selectivity
 - \checkmark no high-energy equivalent (as e.g. quasifree scattering \leftrightarrow pickup reaction)
- (d,p) well established tool for neutron shell structure
 Experimentally tractable in inverse kinematics with RIB
 - ✓ Recoil protons in the backward hemisphere
 - ✓ Accurate detection of residue not mandatory

SIMULATIONS

Using the NPTool package for simulations of Direct reactions

- Event generator: 2Body kinematics and DWBA cross-sections
- Realistic detector configuration
- Detector's resolutions
- Target effects

New event generator :

Includes

- □ beam energy distribution
- □ ADWA for each energy

Application: ⁵⁴Ti(d,p) at RIKEN Population of p,f,and g orbits

Low Energy Branch of the super-FRS

Important neutron capture rates in 4 astroph. environments

M.R. Mumpower et al., PPNC 86, 86 (2016)

Si-based systems currently operating for particle- γ coincidence measurements

 γ -rays \Rightarrow E_x

T-REX + MINIBALL

New Instruments for Direct Reactions studies in Europe

SpecMAT Spectroscopy in a Magnetic Active Target

