

# **PARIS**

#### (Photon Array for studies with Radioactive Ions and Stable beams)



CS IN2P3, 26 June 2019

Iolanda MATEA, for PARIS France



(reviewed in O. Sorlin's talk)



| Physics         | Recoil | v/c       | $E_{\gamma}$ range | $\Delta E_{\gamma}/E_{\gamma}$                              | $\Delta E_{sum}/E_{sum}$ | $\Delta M_{\gamma}$ | Ω        | ΔΤ        | Ancillaries            | Commen                |
|-----------------|--------|-----------|--------------------|-------------------------------------------------------------|--------------------------|---------------------|----------|-----------|------------------------|-----------------------|
| Case            | mass   | [%]       | [MeV]              | [%]                                                         | [%]                      |                     | coverage | [ns]      |                        | ts                    |
| Jacobi          | 40-150 | <10       | 0.1-30             | 4                                                           | <5                       | 4                   | 2π-4π    | <1        | AGATA                  | High eff.             |
| transition      |        |           |                    |                                                             |                          |                     |          |           | HI det.                | Beam rej.             |
| Shape Phase     | 160-   | <10       | 0.1-30             | 6                                                           | <5                       | 4                   | 2π-4π    | <1        | HI det.                | High eff.             |
| Diagram         | 180    |           |                    |                                                             |                          |                     |          |           |                        | Differenti            |
|                 |        |           |                    |                                                             |                          |                     |          |           |                        | al method             |
|                 | 100    | <11       | 0.1.20             | (                                                           | <0                       | 4                   | 2 1      | -1        |                        | Beam rej.             |
| Hot GDK in n-   | 120-   | <11       | 0.1-30             | 6                                                           | <8                       | 4                   | 2π-4π    | <1        | HI det.                | Beam re.              |
|                 | 60,100 | ~7        | 5 20               | 6                                                           |                          |                     | 4        | <u>_1</u> | UI dat                 | Lligh off             |
| isospin mixing  | 00-100 | ~/        | 5-30               | 0                                                           | -                        | -                   | 4π       | ~1        | III det.               | Beam rei              |
| Reaction        | 160-   | <7        | 0.1-25             | 6-8                                                         | <8                       | 4                   | 27       | <1        | n-det                  | Complex               |
| dynamics        | 220    | ~/        | 0.1 25             | 00                                                          | .0                       |                     | 2.50     | -1        | FF det                 | coupling              |
| Collectivity    | 120-   | <8        | 5-                 |                                                             |                          |                     |          |           | LCP det.               | Complex               |
| vs. multi-      | 200    |           | Be                 | $ta \approx 1$                                              | 0% and                   | DM                  | /M < 4   |           | HI det.                | coupling              |
| fragmentation   |        |           |                    |                                                             |                          | /                   |          |           |                        |                       |
| Radiative       | 20-30  | <3        | 1- <b>D</b> T      | ' < 1 n                                                     | S                        |                     |          |           | HI det.                | High eff.             |
| capture         |        |           |                    |                                                             |                          |                     |          |           |                        |                       |
| Multiple        | 40-60  | <7        |                    | $\sigma/F\sigma$                                            | ~ 4-5 %                  |                     |          | 5         | AGATA                  | Complex               |
| Coulex          |        |           |                    | 6/ 25'                                                      |                          |                     |          |           | CD det.                | coupling              |
| Astrophysics    | 16-90  | 0.1       | <sup>0.1</sup> hig | <sup>0.</sup> high efficiency up to 15 MeV Outer PARIS High |                          |                     |          | High eff. |                        |                       |
|                 |        |           | 3                  |                                                             | cieficite y d            |                     |          |           | shell as active        | Back-                 |
| Shall structure | 16.40  | 20        | 0.5.4              | 2                                                           |                          |                     | 2_       | 1         | Shield<br>SDEC or      | Uigh off              |
| at intermediate | 10-40  | 20-<br>40 | 0.5-4              | 5                                                           | -                        | -                   | 511      | ~~1       | VAMOS                  | I ngh ch.             |
| energies        |        | 10        |                    |                                                             |                          |                     |          |           | VILINIOS               | No v coinc            |
| (SISSI/LISE)    |        |           |                    |                                                             |                          |                     |          |           |                        | y y come              |
| Shell structure | 30-150 | 10-       | 0.3-3              | 3                                                           | -                        | -                   | 3π       | <<1       | Spectrometer           | High eff.             |
| at low energies |        | 15        |                    |                                                             |                          |                     |          |           | part of S <sup>3</sup> | Low I <sub>beam</sub> |
| (separator part |        |           |                    |                                                             |                          |                     |          |           |                        | y- y coinc            |
| $of S^3$ )      |        |           |                    |                                                             |                          |                     |          |           |                        |                       |
| Relativistic    | 40-60  | 50-       | 1-4                | 4                                                           | -                        | 1                   | Forward  | <<1       | AGATA                  | Ang.                  |
| Coulex          |        | 60        |                    |                                                             |                          |                     | 3π       |           | HI analyzer            | Distr.                |
|                 |        |           |                    |                                                             |                          |                     |          |           |                        | Lorentz               |
|                 |        | 1         |                    |                                                             |                          |                     |          |           |                        | DOOSt                 |

## **PARIS : two shells design**

→ **inner shell**, highly granular, for use as multiplicity filter, sum-energy, medium energy resolution, fast timing, Doppler correction ...

- $\rightarrow$  **outer shell** for high energy gamma detection
- $\rightarrow$  two shells for efficient add-back reconstruction



This project was developed jointly by physicists from France, Poland and Italy.

# **Phoswich/cluster concept**



| PARS                                         | PA                                        | RIS phases and co | st estimates |         |
|----------------------------------------------|-------------------------------------------|-------------------|--------------|---------|
| Phase 1<br>2011/2012<br>PARIS Prototype      | 1 cluster:<br>9 phoswiches<br>(ANR PROVA) |                   |              | 250 k€  |
| Phase 2<br>2015<br>PARIS<br>Demonstrator     | ~ 9 clusters<br>(81 phoswichs)            |                   |              | 1900 k€ |
| Phase 3<br>2022<br>PARIS 2π                  | 12 clusters:<br>108<br>phoswiches         |                   |              | 2500 k€ |
| <i>Phase 4</i><br>2025 ?<br><b>PARIS 4</b> π | ≥24 clusters:<br>≥216<br>phoswiches       |                   |              | 5000 k€ |

## **PARIS organisation**

PARIS Steering Committee (nominated by the MoU partners): IN2P3 France: <u>O. Dorvaux</u> GANIL France: <u>M. Lewitowicz</u> COPIN Poland: B. Fornal (dep.chair) India: V. Nanal (chair) Italy: A. Bracco Romania: M. Stanoiu UK: W. Catford Turkey: S. Erturk

Working Groups and their Coordinators (proposed by PPM and aproved by PSC):

Geant4 simulation: <u>O. Stezowski</u> Detectors: <u>O. Dorvaux</u> Electronics and DAQ: P. Bednarczyk Mechanical integrations: <u>I. Matea</u> Data analysis: **S. Leoni** New materials: **F. Camera** New Physics case: **I. Mazumdar** 

PARIS Management Board: PARIS Project Manager + WG coordinators PARIS Project Manager (nominated by PSC) A. Maj (Poland)

PARIS Collaboration Council (nominated by the MoU institutions) Franco Camera (INFN, Italy) - chair and PARIS spokesman Chandana Bhattacharya (VECC Kolkata, India) Wilton N. Catford (University of Surrey, UK) Marco Cinausero (LNL Legnaro, Italy) Sandrine Courtin (IPHC Strasbourg, France) Zsolt Dombradi (ATOMKI Debrecen, Hungary) Camille Ducoin (IPN Lyon, France) Sefa Ertuerk (Nigde, Turkey) Juergen Gerl (GSI, Germany) Anil K. Gourishetty (IIT Roorkee, India) David Jenkins (University of York, UK) Maria Kmiecik (IFJ PAN Krakow, Poland) Basant Kumar Nayak (BARC Mumbai, India) Marc Labiche (STFC Daresbury, UK) Vandana Nanal (TIFR Mumbai, India) Pawel Napiorkowski (HIL Warsaw, Poland) Marek Ploszajczak (GANIL, France) Mihai Stanoiu (IFIN-HH Bucharest, Romania) **Jonathan Wilson** (IPN Orsay, France)

PARIS

Photon Array for studies with Radioactive Ions and Stable beams

## **Memorandum of Understanding**



#### AMENDMENT n°1

TO Memorandum of Understanding

PARIS

Photon Array for studies with Radioactive

GOAL: Phase 2 ++

(2013 - 2021)

#### MoU Amendment (extraction)

Signature collection from partners in progress

\* Under financial support by grant of Plenipotentiary of the Government of the Poland Republic to JINR **Table 5.1** Summary table of the proposed capital investment, personnel resources for PARIS system and the planned sharing between the participating collaborating institutions of each Party (extracted from the amendment to the PARIS Demonstrator MoU).

## **Detector ownership (past, present and future projections)**

(PARIS MoU and MoU amendment)





Manpower : IN2P3 et GANIL



#### **PARIS** is in a construction phase : manpower investment at the lowest !

(based of 2018 NSIP declaration) (only most active persons are mentioned)

# **Physics with PARIS : highlights**



## **PARIS strong points :**

- → high efficiency over a wide range of energies ( $\sim$ 100 keV to 30 MeV)
- → good energy resolution
- → granularity (for use as multiplicity filter, Doppler correction ...)
- → sub-nanosecond timing resolution (neutron gamma discrimination)
- $\rightarrow$  stand high count rates (~MHz)
- → some depth granularity (gain in the add-back reconstruction)
- → modularity (to facilitate the integration with other detectors)
- → mobility (for experimental campaign in other facilities)



# Prompt gamma and neutron emission for <sup>238</sup>U induced fission with fast neutrons at different energies (ALTO)

Courtesy of L. Qi

## **Two-fold motivation:**

#### **1. Reactor Physics**

- 5% release in fission is done through PFG and  $\gamma$ -heating can be underestimated by up to 28%
- design of Gen. IV reactors: fast neutron reactors nuclear data are scarce out of thermal regime

#### 2. Fundamental Physics

- understanding the fission process, like energy partition in fission or generation of  $\vec{J}$ - study of level density function,  $\gamma$ -strength function, competition between n and  $\gamma$  emission (needed for validation of different competing codes like GEF, FREYA, CGMF, FIFRELIN)





Prompt gamma and neutron emission for <sup>238</sup>U induced fission with fast neutrons at different energies (ALTO)

Courtesy of L. Qi

→ aiming at measuring spectral characteristics ( $M_y$ ,  $E_y$  tot and  $\varepsilon_{ph}$ ) for different fissioning systems

 $\rightarrow$  <sup>252</sup>Cf source measurements (test data)

 $\rightarrow$  E<sub>n</sub> = (1.9; 4.8) MeV – induced fission on <sup>238</sup>U

( $\rightarrow$  also studied induced fission of fast n on <sup>239</sup>Pu)



# Prompt gamma and neutron emission for <sup>238</sup>U induced fission with fast neutrons at different energies (ALTO)

Courtesy of L. Qi



TABLE III. Summary of PFGS characteristics for the  $^{238}$ U(n,f) reaction at two incident neutron energies.

|                  | $E_n$ (MeV) | $M_{\gamma}(/fission)$ | $E_{\gamma,tot}(MeV)$ | $\epsilon_{\gamma}(MeV)$ |
|------------------|-------------|------------------------|-----------------------|--------------------------|
| This work        | 1.9         | $6.54{\pm}0.19$        | $5.25 {\pm} 0.20$     | $0.80 \pm 0.04$          |
|                  | 4.8         | $7.31{\pm}0.46$        | $6.18{\pm}0.65$       | $0.84{\pm}0.11$          |
| J-M.Laborie      | 1.7         | $7.05 {\pm} 0.20$      | $5.92{\pm}0.24$       | $0.84{\pm}0.03$          |
| et al. [7]       | 5.2         | $7.25{\pm}0.35$        | $5.73 {\pm} 0.40$     | $0.79 {\pm} 0.04$        |
| M.Lebois         | 2.4         | $7.62{\pm}0.25$        | $5.78{\pm}0.29$       | $0.77 \pm 0.03$          |
| $et \ al. \ [8]$ | 3.3         | $10.08 {\pm} 0.14$     | $7.55{\pm}0.15$       | $0.75 {\pm} 0.01$        |

Phys.Rev. C 98, 014612 (2018) Second paper under prep.

### **Conclusions:**

 $\rightarrow$  low energy PFGS different for different energies : change in fragment population

→ softening of the HE part of PFGS suggests that the increased total excitation energy goes to the heavy fragments : hints on the excitation energy sharing mechanism ...

→ spectral characteristics stay constant with increased neutron energy : extra excitation energy is mainly evacuated by prompt neutron evaporation. As a consequence, the fast reactors in Generation-IV don't need significant changes in the modeling of gamma heating transportation



Prompt gamma rays as a probe of nuclear dynamics (ALTO)

## Motivation and Goal : Challenging fission around the interaction barrier

 $^{32}\text{S}+^{197}\text{Au} \rightarrow ^{229}\text{Am}^*\text{, } \text{E}^* \approx 43~\text{MeV}$ 

- Coupling of 3 detection systems: CORSET + ORGAM + PARIS;
- Extracting details on the shell effects characterizing two competing processes fusion-fission (CNF) and quasi-fission (QF) : (A, TKE) correlation;
- Measurement of prompt γ-rays in coincidence with binary reaction fragments obtained in the reactions : low and high energy γ-rays for further insight.



- Are population and feedings of specific isotopes preferred in different mechanisms or CNF modes?
- How does the γ-ray multiplicity or the sum energy evolve with fragment mass A, TKE or their variances?

Courtesy of I.M. Harca



Prompt gamma rays as a probe of nuclear dynamics (ALTO)

## Experimental Setup: CORSET





# Prompt gamma rays as a probe of nuclear dynamics (ALTO)

IPN

# Experimental Setup: Coincident FF - γ-rays

- ORGAM: Prompt γ-rays coincident with FF
- PARIS: Prompt γ-rays (HE part) coincident with FF.

| Parameter                       | ORGAM                        | PARIS                                |  |
|---------------------------------|------------------------------|--------------------------------------|--|
| Number and type<br>of Detectors | 10 x Ge + BGO<br>shielding   | 10 x LaBr3(Ce)-NaI(Tl)<br>(phoswich) |  |
| Photo-peak<br>Efficiency        | ~1%                          | ~1%                                  |  |
| Energy resolution               | 2.6(3.4)keV<br>@121(1408)keV | 62keV<br>@1332keV                    |  |
| Dynamical range                 | $E_{\gamma} < 2.5 MeV$       | $E_{\gamma} < 15 MeV$                |  |







→ **Unique** investigation tool (using PARIS) of the energy deformation at different stages of fusion-fission and quasi-fission processes

→ First measurement of the nuclei spin as function of the fission fragment mass distribution for different selection in the total kinetic energy of the considered system

 $\ensuremath{\,\rightarrow\,}$  opportunity to develop a program around this topic



I. Harca et al., "Features of the fission-like fragments following the heavy ion induced 32S+197Au reaction near the interaction barrier", in progress for publication in PRC (2019)

### **Testing the Brink-Axel hypothesis (CCB IFJ PAN)**

Courtesy of A. Maj

#### → GDR build on GS and excited states are equivalent. What about the PDR ?



B. Wasileska et al., Acta Phys. Pol. B 50, 469 (2019)



## Past/Present/Future "séjours" of PARIS

```
GANIL/SPIRAL2 (France) → LoIs & Experiments
IPN/ALTO (France) → LoIs & Experiments
CCB IFJ PAN Krakow (Poland) → Experiments
SPES/LNL Legnaro (Italy) → LoIs
HISPEC/DESPEC FAIR (Germany) → Lols
JINR/Dubna (Russia) → (future) Experiments
TIFR/BARC (India) → (future) Experiments
```

There will be a PARIS collaboration meeting in 2019 (autumn) (organized by F. Camera and A. Maj) with the goal to discuss new/updated PARIS physics

| Strengths                                                                                                                                                                                                                                                                                                                     | Weakness                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>High performances detection system in terms of :</li> <li>efficiency in wide photon energy range</li> <li>energy and timing resolutions</li> <li>modularity and granularity</li> <li>mobility</li> <li>simultaneously sensitivity to photons and neutrons</li> <li>easy to integrate with other detectors</li> </ul> | <ul> <li>no home-base of detectors</li> <li>limited fund to complete Phase4 (4pi)</li> <li>PARIS standard electronic still not defined</li> <li>limited numbers of FTE, but</li> </ul> |
| Oportunities                                                                                                                                                                                                                                                                                                                  | Threats                                                                                                                                                                                |
| Nice opportunities for synergies with different partners<br>Readiness for physics with new facilities                                                                                                                                                                                                                         | <ul> <li>Unknown crystal ageing</li> <li>not many provider for phoswich like for PARIS crystals (Saint Gobain/Scionix)</li> </ul>                                                      |
|                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        |